Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
To achieve more accurate Earth system model projections of diverse climate scenarios, researchers need observation-based data on the movement of carbon between reservoirs, and especially across tropical regions. The Tropical Low-Pressure Belt (TLPB) is a key driver of atmospheric circulation across lower latitudes. While the TLPB shifts across the east–west extent of northern Africa, the extent to which 14C concentrations apply to Afrotropical forests remains untested, restricting our understanding about other carbon feedbacks. Here, we present a high-precision atmospheric 14C record (1940–2012) from a lowland tropical tree species (Entandrophragma utile) in Cameroon. We included 107 measurements from whole rings and 15 intra-annual slices. The intra-annual 14C data from 1962, 1963, and 1964 confirm a 7-month long growing season (April–November) with a photosynthetic profile typical of Northern Hemisphere (NH) sites, and showing no nonstructural-carbohydrate interference. The full 14C record reveals that air masses reaching the site were derived primarily from Southern Hemisphere (SH) readings followed by recycled bomb-14C signals from soil and litter. Radiocarbon results were substantiated by HYSPLIT model trajectories coupled with NCEP/NCAR reanalysis data. The paradox of finding that tropical NH trees grow using 14CO2 of SH air masses and land-surface respiration challenges existing zonal 14C classifications. Our findings highlight an essential role for robust observational 14C data in refining atmospheric models and improving carbon-cycle assessments across distinct climate zones.more » « lessFree, publicly-accessible full text available August 1, 2026
-
To achieve more accurate Earth system model projections of diverse climate scenarios, researchers need observation-based data on the movement of carbon between reservoirs, and especially across tropical regions. The Tropical Low-Pressure Belt (TLPB) is a key driver of atmospheric circulation across lower latitudes. While the TLPB shifts across the east–west extent of northern Africa, the extent to which 14C concentrations apply to Afrotropical forests remains untested, restricting our understanding about other carbon feedbacks. Here, we present a high-precision atmospheric 14C record (1940–2012) from a lowland tropical tree species (Entandrophragma utile) in Cameroon. We included 107 measurements from whole rings and 15 intra-annual slices. The intra-annual 14C data from 1962, 1963, and 1964 confirm a 7-month long growing season (April–November) with a photosynthetic profile typical of Northern Hemisphere (NH) sites, and showing no nonstructural-carbohydrate interference. The full 14C record reveals that air masses reaching the site were derived primarily from Southern Hemisphere (SH) readings followed by recycled bomb-14C signals from soil and litter. Radiocarbon results were substantiated by HYSPLIT model trajectories coupled with NCEP/NCAR reanalysis data. The paradox of finding that tropical NH trees grow using 14CO2 of SH air masses and land-surface respiration challenges existing zonal 14C classifications. Our findings highlight an essential role for robust observational 14C data in refining atmospheric models and improving carbon-cycle assessments across distinct climate zones.more » « less
-
In this study, we present a comprehensive atmospheric radiocarbon (14C) record spanning from 1940 to 2016, derived from 77 single tree rings of Cedrela odorata located in the Eastern Amazon Basin (EAB). This record, comprising 175 high-precision 14C measurements obtained through accelerator mass spectrometry (AMS), offers a detailed chronology of post-1950 CE (Common Era) 14C fluctuations in the Tropical Low-Pressure Belt (TLPB). To ensure accuracy and reliability, we included 14C-AMS results from intra-annual successive cuts of the tree rings associated to the calendar years 1962 and 1963 and conducted interlaboratory comparisons. In addition, 14C concentrations in 1962 and 1963 single-year cuts also allowed to verify tissue growth seasonality. The strategic location of the tree, just above the Amazon River and estuary areas, prevented the influence of local fossil-CO2 emissions from mining and trade activities in the Central Amazon Basin on the 14C record. Our findings reveal a notable increase in 14C from land-respired CO2 starting in the 1970s, a decade earlier than previously predicted, followed by a slight decrease after 2000, signaling a transition towards the fossil fuel era. This shift is likely attributed to changes in reservoir sources or global atmospheric dynamics. The EAB 14C record, when compared with a shorter record from Muna Island, Indonesia, highlights regional differences and contributes to a more nuanced understanding of global 14C variations at low latitudes. This study not only fills critical spatial gaps in existing 14C compilations but also aids in refining the demarcation of 14C variations over South America. The extended tree-ring 14C record from the EAB is pivotal for reevaluating global patterns, particularly in the context of the current global carbon budget, and underscores the importance of tropical regions in understanding carbon-climate feedbacks.more » « less
-
In this study, we present a comprehensive atmospheric radiocarbon (14C) record spanning from 1940 to 2016, derived from 77 single tree rings of Cedrela odorata located in the Eastern Amazon Basin (EAB). This record, comprising 175 high-precision 14C measurements obtained through accelerator mass spectrometry (AMS), offers a detailed chronology of post-1950 CE (Common Era) 14C fluctuations in the Tropical Low-Pressure Belt (TLPB). To ensure accuracy and reliability, we included 14C-AMS results from intra-annual successive cuts of the tree rings associated to the calendar years 1962 and 1963 and conducted interlaboratory comparisons. In addition, 14C concentrations in 1962 and 1963 single-year cuts also allowed to verify tissue growth seasonality. The strategic location of the tree, just above the Amazon River and estuary areas, prevented the influence of local fossil-CO2 emissions from mining and trade activities in the Central Amazon Basin on the 14C record. Our findings reveal a notable increase in 14C from land-respired CO2 starting in the 1970s, a decade earlier than previously predicted, followed by a slight decrease after 2000, signaling a transition towards the fossil fuel era. This shift is likely attributed to changes in reservoir sources or global atmospheric dynamics. The EAB 14C record, when compared with a shorter record from Muna Island, Indonesia, highlights regional differences and contributes to a more nuanced understanding of global 14C variations at low latitudes. This study not only fills critical spatial gaps in existing 14C compilations but also aids in refining the demarcation of 14C variations over South America. The extended tree-ring 14C record from the EAB is pivotal for reevaluating global patterns, particularly in the context of the current global carbon budget, and underscores the importance of tropical regions in understanding carbon-climate feedbacks.more » « less
An official website of the United States government
